top of page

Схемы включения ламп дневного света

 При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, горит дуговой разряд[3][4]. Лампа заполненаинертным газом и парами ртути, проходящий электрический ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.

Дуговой разряд поддерживается за счёт термоэлектронной эмиссии заряженных частиц (электронов) с поверхности катода. Для запуска лампы катоды разогреваются либо пропусканием через них тока (лампы типа ДРЛ, ЛД), либо ионной бомбардировкой в тлеющем разряде высокого напряжения («лампы с холодным катодом»). Ток разряда ограничивается балластом.

  • Wix Facebook page
  • Wix Twitter page
  • Wix Google+ page

Люминесцентная лампа

Люминесце́нтная ла́мпа — газоразрядный источник света, в котором электрический разряд в парахртути создаёт ультрафиолетовое излучение, которое преобразуется в видимый свет с помощьюлюминофора 

Принцип работы

Электромагнитный балласт

Электромагнитный балласт (сокращенно ЭмПРА — Электромагнитный Пускорегулирующий Аппарат) представляет собой электромагнитный дроссель с определенным индуктивным сопротивлением, подключаемый последовательно с лампой (лампами) определенной мощности. Последовательно нитям накала лампы подключается стартер, представляющий собой неоновую лампу с биметаллическими электродами и конденсатор (неоновая лампа и конденсатор подключены параллельно). Дроссель формирует за счёт самоиндукции запускающий импульс (до 1 кВ), а также ограничивает ток через лампу за счет индуктивного сопротивления. В настоящее время преимуществами электромагнитного балласта являются простота конструкции и низкая стоимость. Недостатков же такой схемы достаточно много:

  • Долгий запуск (1—3 сек в зависимости от степени износа лампы);

  • Потребление большего количества энергии дросселем, по сравнению с ЭПРА (при напряжении 220 В светильник из 2 ламп по 58 Вт, то есть в сумме 116 Вт, потребляет 130 Вт);

  • Малый cos φ, около 0,35—0,50 (без компенсирующих конденсаторов);

  • Низкочастотное (50 Гц) гудение пластин дросселя, которое возрастает с его старением;

  • Мерцание лампы с удвоенной частотой сети (100 Гц), которое негативно может сказаться на зрении[источник не указан 148 дней], а также вызывает стробоскопический эффект (вращающиеся синхронно с частотой сети предметы и детали станков могут казаться неподвижными). Люминесцентные лампы с электромагнитным балластом запрещается применять для освещения подвижных частей станков и механизмов (во-всяком случае, без дополнительного подсвечивания лампами накаливания);

  • Большие габариты (по сравнению с наиболее примитивными ЭПРА) и значительная масса (несколько килограмм);

  • При отрицательных температурах лампы подключенные с использованием стартёрно-дроссельной схемы могут не зажигаться вообще.

Стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой небольшую неоновую лампу с подключенным параллельно ей конденсатором, заключенную в корпус. Один внутренний электрод неоновой лампы стартера неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве (есть также стартеры и с двумя гибкими электродами (симметричные)). В исходном состоянии электроды стартера разомкнуты. Стартер подключается параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

Anchor 1
bottom of page